HW06 - Buffers, Titrations, and Polyprotics

Question 1 1 pts	Question 6 1 pts
When an acid and base neutralize each other, the products are generally water and...	Aqueous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two
a colloid.	
a salt.	NH $\mathrm{NH}_{4} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively
a gel.	cyanamide and cellulose nitrate, respectively
an ion.	($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$, respectively
	$\mathrm{NH}_{4} \mathrm{SO}_{3}$ and $\mathrm{NH}_{4} \mathrm{OH}$, respetively
Question 2 (pts	
How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are needed to neutralize three moles of HCl ?	Question 7 1 pts
- 2	Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid.
$\bigcirc 1$	
- 1.5	potassium amide
$\bigcirc 3$	potassium formate
	potassium acetate
	potassium cyanide
Question 3 (1 pts	
An aqueous solution is prepared with 2 moles of HCl and 1 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The resulting solution contains mainly...	Question 8 1 pts
water, Cl^{-}ions, and Ca^{2+} ions.	What is the pH of an aqueous solution that is $0.018 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=4.3 \times 10^{-10}\right)$ and 0.12 $\mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}$?
water, Cl^{-}ions, H^{+}ions, and Ca^{2+} ions.	
water, Cl^{-}ions, H^{+}ions, OH^{-}ions, and Ca^{2+} ions.	4.63
water, Cl^{-}ions, OH^{-}ions, and Ca^{2+} ions.	3.81
	- 4.02
	- 2.87
Question 4 1 pts	
Identify the products of the following chemical reaction:$3 \mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow$	Question 9 1 pts
	A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.33 moles of KOH into 710 mL of solution. What is the pH of this buffer? $\mathrm{K}_{\mathrm{a}}=6 \times 10^{-6}$ for HA.
$3 \mathrm{H}^{+}+3 \mathrm{O}_{2}+\mathrm{H}_{3} \mathrm{Li}_{3}$	
- $\mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$	13.23
$\mathrm{Li}_{3} \mathrm{P}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{O}_{5}$	5.22
- $3 \mathrm{LLH}+(\mathrm{OH})_{3} \mathrm{PO}_{4}$	5.66
	8.34
Question 5 1 pts	
Identify the products of the following chemical reaction:	Question 10 1 pts
$\mathrm{Sr}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \longrightarrow$	Which one of the following combinations is NOT a buffer solution?
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NaCH}_{3} \mathrm{COO}$
SrNO $3+\mathrm{H}_{2} \mathrm{O}$	HBr and KBr
- $\mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}_{2}$	NH3 and ($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\mathrm{SrH}+\mathrm{HNO}_{5}$	HCN and NaCN

| Question 11 |
| :--- | :--- |
| Which of the following mixtures will be a buffer when dissolved in a liter of water? |
| $0.1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ and 0.3 mol HI |
| 0.2 mol HF and 0.1 mol NaOH |
| 0.2 mol HBr and 0.1 mol NaOH |
| 0.3 mol NaCl and 0.3 mol HCl |

Question 12
What is the pH of a solution which is 0.600 M in dimethylamine $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right)$ and 0.400 M
in dimethylamine hydrochloride $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{Cl}\right)$? Kb_{b} for dimethylamine $=7.4 \times 10^{-4}$.
10.87
11.05
10.78
11.21

Question 15

1 pts

A solution is 0.30 M in NH_{3}. What concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ would be required to achieve a buffer solution with a final pH of 9.0 ? $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$ for NH_{3}.
0.10 M
0.45 M
0.54 M
0.32 M

Question 16

What is the pH at the half-stoichiometric point for the titration of $0.22 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ with $0.1 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$? For $\mathrm{HNO}_{2}, \mathrm{~K}_{\mathrm{a}}=4.3 \times 10^{-4}$.
3.37
2.31
2.01
7.00

Question 17

1 pts

For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with $0.020 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$, calculate the pH after the addition of 55.0 mL of the base. For salicylic acid, $\mathrm{pK}_{\mathrm{a}}=2.97$.

7.00

- 11.26
10.98
- 11.02

Question 18

1 pts

Consider the titration of 50.0 mL of $0.0200 \mathrm{M} \mathrm{HClO}(\mathrm{aq})$ with $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the formula of the main species in the solution after the addition of 10.0 mL of base?
ClO^{-}

- ClO_{2}

HClO
O NaOH

Question 19
50.0 mL of 0.0018 M aniline (a weak base) is titrated with $0.0048 \mathrm{M} \mathrm{HNO}_{3}$. How many mL of the acid are required to reach the equivalence point? 18.8 mL 133 mL This is a bad titration as HNO_{3} is not a strong acid. 4.21 mL

Question $20 \quad 1$ pts

When we titrate a weak base with a strong acid, the pH at the equivalence point will be...

It is impossible to know unless we are given the K_{b} of the weak base.
$\mathrm{pH}<7$
$\mathrm{pH}>7$
$\mathrm{pH}=0$

Question 21
What is the pH at the equivalence point in the titration of 10.0 mL of 0.35 M unknown acid
HZ with $0.200 \mathrm{M} \mathrm{NaOH} ? \mathrm{~K}_{\mathrm{a}}=2.4 \times 10^{-7}$ for the unknown acid HZ
7.00
4.14
10.1
9.86

Look at the titration diagram in the question above. What type of titration is occurring?
a weak base titrated with a weak acid
a weak base titrated with a strong acid
a strong base titrated with a weak acid
a strong base titrated with a strong acid

Question 24

1 pts

The acid form of an indicator is yellow and its anion is blue. The K_{a} of this indicator is 10^{-}
${ }^{5}$. What will be the approximate pH range over which this indicator changes color?

```
\(6<\mathrm{pH}<8\)
\(3<\mathrm{pH}<5\)
\(4<\mathrm{pH}<6\)
\(5<\mathrm{pH}<7\)
```


Question 25

1 pts

The unionized form of an acid indicator is yellow and its anion is blue. The K_{a} of this indicator is 10^{-5}. What will be the color of the indicator in a solution of pH 3 ?
yellow
orange

- blue
green

Question 22

What is the pH at the equivalence point of the titration pictures below?

8

5
9
2
Question $26 \quad 2 \mathrm{pts}$

Aspartic acid is a polypeptide side chain found in proteins. The pK_{a} of aspartic acid is 3.86. If this polypeptide were in an aqueous solution with a pH of 7 , the side chain would have what charge?
neutral
positive
negative
there is no way to know

Question 27

Blood contains a buffer of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ and hydrogen carbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$ that keeps the pH at a relatively stable 7.40 . What is the ratio of $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ in blood? $\mathrm{K}_{\mathrm{a} 1}=4.30 \times 10^{-7}$ for $\mathrm{H}_{2} \mathrm{CO}_{3}$. (Hint: Assume $\left[\mathrm{CO}_{3}{ }^{2}\right]=0$)
3.98×10^{-8}
(10.8
1.71×10^{-14}
0.0926

Question 28

$\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid because the first proton ionizes 100%. The K_{a} of the second proton is 1.1×10^{-2}. What would be the pH of a solution that is $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$? Account for the ionization of both protons.
0.963
. 1.00
0.955
2.05

