HW06 - Buffers, Titrations, and Polyprotics

Question 1 1 pts	Question 6 1 pts
When an acid and base neutralize each other, the products are generally water and	Aqueous ammonia can be used to neutralize sulfuric acid and nitric acid to produce two salts extensively used as fertilizers. They are
a colloid.	
o a salt.	○ NH ₄ SO ₄ and NH ₄ NO ₃ , respectively
O a gel.	cyanamide and cellulose nitrate, respectively
o an ion.	○ (NH ₄) ₂ SO ₄ and NH ₄ NO ₃ , respectively
	NH ₄ SO ₃ and NH ₄ OH, respetively
Question 2 1 pts	
How many moles of Ca(OH) ₂ are needed to neutralize three moles of HCl?	Question 7 1 pts
<u> </u>	Identify the salt that is produced from the acid-base neutralization reaction between potassium hydroxide and acetic acid.
01	o potassium amide
0 1.5	o potassium formate
O 3	o potassium acetate
	o potassium cyanide
Question 3 1 pts	
An aqueous solution is prepared with 2 moles of HCl and 1 mole of $Ca(OH)_2$. The resulting solution contains mainly	Question 8 1 pts
○ water, Cl⁻ ions, and Ca²+ ions.	What is the pH of an aqueous solution that is 0.018 M $C_6H_5NH_2$ (K_b = 4.3x10 ⁻¹⁰) and 0.12 M $C_6H_5NH_3Cl$?
water, Cl ⁺ ions, H ⁺ ions, and Ca ²⁺ ions.	○ 4.63
water, Cl ⁻ ions, H ⁺ ions, OH ⁻ ions, and Ca ²⁺ ions.	○ 3.81
○ water, Cl⁻ ions, OH⁻ ions, and Ca²+ ions.	○ 4.02
	○ 2.87
Question 4 1 pts	
Identify the products of the following chemical reaction:	Question 9 1 pts
$3\text{LiOH} + \text{H}_3\text{PO}_4 \longrightarrow$	
○ 3H ⁺ + 3O ₂ + H ₃ Li ₃	A buffer solution is made by dissolving 0.45 moles of a weak acid (HA) and 0.33 moles of KOH into 710 mL of solution. What is the pH of this buffer? $K_a = 6x10^{-6}$ for HA.
○ Li ₃ PO ₄ + 3H ₂ O	○ 13.23
○ Li ₃ P + 2H ₂ O + H ₃ O ₅	○ 5.22
○ 3LiH + (OH) ₃ PO ₄	
	○ 8.34
Question 5 1 pts	
Identify the products of the following chemical reaction:	Question 10 1 pts
$Sr(OH)_2 + 2HNO_3 \longrightarrow$	Which one of the following combinations is NOT a buffer solution?
○ Sr(NO ₃) ₂ + 2H ₂ O	○ CH ₃ COOH and NaCH ₃ COO
○ SrNO ₃ + H ₂ O	HBr and KBr
$\bigcirc Sr(NO_2)_2 + 2H_2O_2$	○ NH ₃ and (NH ₄) ₂ SO ₄
○ SrH₂ + HNO₅	HCN and NaCN

Question 11	1 pts	Question 15	1 pts
Which of the following mixtures will be a buffer when dissolved in a liter of water?		A solution is 0.30 M in NH ₃ . What concentration of NH ₄ Cl would be required to a buffer solution with a final pH of 9.0? $K_b = 1.8 \times 10^{-5}$ for NH ₃ .	ıchieve a
O.1 mol Ca(OH) ₂ and 0.3 mol HI		build solution with a mai pri of 3.0: 1% - 1.0x10 for Ning.	
O.2 mol HF and 0.1 mol NaOH		O 0.10 M	
O.2 mol HBr and 0.1 mol NaOH		○ 0.45 M	
0.3 mol NaCl and 0.3 mol HCl		O 0.54 M	
		○ 0.32 M	
Question 12	1 pts		
What is the all of a solution which is 0,000 M is dissetted assistant (CLL) NII) and 0.	100 14	Question 16	1 pts
What is the pH of a solution which is 0.600 M in dimethylamine ($(CH_{3})_2NH$) and 0.4 in dimethylamine hydrochloride ($(CH_{3})_2NH_2CI$)? K_b for dimethylamine = 7.4x10 ⁻⁴ .	100 M	What is the pH at the half-stoichiometric point for the titration of 0.22 M HNO ₂ (at 0.1 M KOH(aq)? For HNO ₂ , $K_a = 4.3x10^{-4}$.	գ) with
○ 10.87 ○ 11.05		○ 3.37	
① 10.78		○ 2.31	
O 11.21		○ 2.01	
		O 7.00	
Question 13	1 pts	Question 17	1 pts
What would be the final pH if 0.0100 moles of solid NaOH were added to 100mL of buffer solution containing 0.600 molar formic acid (ionization constant = 1.8x10 ⁻⁴) a 0.300 M sodium formate?		For the titration of 50.0 mL of 0.020 M aqueous salicylic acid with 0.020 M KOH calculate the pH after the addition of 55.0 mL of the base. For salicylic acid, pK_a	
○ 3.44		O 7.00	
○ 3.65		○ 11.26	
○ 3.84		O 10.98	
O 4.05		O 11.02	
Question 14	1 pts	Question 18	1 pts
A buffer was prepared by mixing 0.200 moles of ammonia ($K_b = 1.8 \times 10^{-5}$) and 0.20 moles of ammonium chloride to form an aqueous solution with a total volume of 50 250 mL of the buffer was added to 50.0 mL of 1.00 M HCl. What is the pH of this solution of the buffer was added to 50.0 mL of 1.00 M HCl.	0 mL.	Consider the titration of 50.0 mL of 0.0200 M HClO(aq) with 0.100 M NaOH(aq). the formula of the main species in the solution after the addition of 10.0 mL of ba	
solution?		○ cio-	
○ 8.78		○ CIO ₂	
○ 8.18		O HCIO	
O 8.38		○ NaOH	
○ 8.53			

Question 19	1 pts
50.0 mL of 0.0018 M aniline (a weak base) is titrated with 0.0048 M HNO ₃ . How man of the acid are required to reach the equivalence point?	ny mL
○ 18.8 mL	
○ 133 mL	
○ This is a bad titration as HNO ₃ is not a strong acid.	
○ 4.21 mL	

Question 20	1 pts
When we titrate a weak base with a strong acid, the pH at the equivalence point	will be
$\hfill \bigcirc$ It is impossible to know unless we are given the K_b of the weak base.	
○ pH < 7	
○ pH > 7	
○ pH = 0	

Question 21	1 pts
What is the pH at the equivalence point in the titration of 10.0 HZ with 0.200 M NaOH? $K_a = 2.4 \times 10^{-7}$ for the unknown acid H	
○ 7.00	
O 4.14	
O 10.1	
O 9.86	

Question 22	1 pts
What is the pH at the equivalence point of the titration pictures below?	
10-	
8-	
돌 6-	
4-	
2-	
0 20 40 60 80 100 mL of HCl added	
O 8	
O 5	
<u> </u>	
O 2	

Question 23	1 pts
Look at the titration diagram in the question above. What type of titration is occur	ırring?
a weak base titrated with a weak acid	
a weak base titrated with a strong acid	
a strong base titrated with a weak acid	
a strong base titrated with a strong acid	

Question 24	1 pts
The acid form of an indicator is yellow and its anion is blue. The $\rm K_a$ of this indicator $\rm ^5$. What will be the approximate pH range over which this indicator changes color?	is 10⁻
○ 6 < pH < 8	
○ 3 < pH < 5	
○ 4 < pH < 6	
○ 5 < pH < 7	

Question 25	1 pts
The unionized form of an acid indicator is yellow and its anion is blue. The $\rm K_a$ of thi indicator is 10^{-5} . What will be the color of the indicator in a solution of pH 3?	s
yellow	
orange	
O blue	
O green	

Question 26	2 pts
Aspartic acid is a polypeptide side chain found in proteins. The 3.86. If this polypeptide were in an aqueous solution with a pH of have what charge?	
o neutral	
opositive	
onegative	
there is no way to know	

Question 27	1 pts
Blood contains a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate ion (H_2CO_3) that keeps the pH at a relatively stable 7.40. What is the ratio of [H_2CO_3] / [H_2CO_3] blood? $K_{a1} = 4.30 \times 10^{-7}$ for H_2CO_3 . (Hint: Assume [CO_3^2] = 0)	- /
○ 3.98 x 10 ⁻⁸	
O 10.8	
○ 1.71 x 10 ⁻¹⁴	
0.0926	

Question 28	2 pts
H_2SO_4 is a strong acid because the first proton ionizes 100%. The proton is 1.1×10^{-2} . What would be the pH of a solution that is 0.10 for the ionization of both protons.	-
0.963	
0.963 0 1.00	
_	